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a b s t r a c t

The dynamic stress intensity factor at the edge of a semi-infinite conical crack when the medium is
loaded by a non-stationary centre of rotation is determined. A centre of rotation is understood to be a set
of four forces of equal magnitude that act in the same plane and form pairs having the same direction
of rotation.1 If the magnitude of these forces is time dependent, i.e., their application is non-stationary,
they form a non-stationary centre of rotation. The solution of the problem required the use of methods of
integral transformations and discontinuous solutions, which reduced the problem to an integral differ-
ential equation in Laplace transform space. The combined use of the orthogonal polynomial method and
time discretization to solve the equation enabled a formula for the stress intensity factor to be obtained.

© 2010 Elsevier Ltd. All rights reserved.

Non-stationary problems of mechanics for elastic media with cracks are solved by various methods.2–8 The stress concentration near
defects of conical shape in unbound elastic bodies was investigated in earlier studies,9–11 where these problems were considered in a static
formulation. In a non-stationary formulation, the problem has been solved for a conical defect of finite size.12

1. Formulation of the problem

1.1. Reduction of the problem to an integral equation

An unbounded elastic medium has a semi-infinite conical crack whose surface in a spherical system of coordinates (r, �, �) is described
by the relations

(1.1)

The centre of rotation is situated at a distance b from the origin of coordinates (see Fig. 1). The spherical torsion wave u0
�(r, �, t)

generated by it12 at the instant of time t = 0 touches the edge of the crack, the sides of which are assumed to be stress free. It is required to
determine the dynamic stress intensity factor close to the crack for zero initial conditions.

In the above formulation, the only non-zero components of the displacement vector are the displacements u0
�(r, �, t), which satisfy the

torsion equation

(1.2)

everywhere with the exception of the surface of the crack (1.1). Here, G is the shear modulus, � is the density of the medium, a dot (•)
denotes a partial derivative with respect to the variable �, and a prime (′) denotes a partial derivative with respect to the variable r. On

� Prikl. Mat. Mekh. Vol. 74, No. 2, pp. 336–345, 2010.
∗ Corresponding author.

E-mail address: popov@onu.edu.ua (G.Ya. Popov).

0021-8928/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jappmathmech.2010.05.015

dx.doi.org/10.1016/j.jappmathmech.2010.05.015
http://www.sciencedirect.com/science/journal/00218928
http://www.elsevier.com/locate/jappmathmech
mailto:popov@onu.edu.ua
dx.doi.org/10.1016/j.jappmathmech.2010.05.015


242 N.D. Vaisfel’d, G.Ya. Popov / Journal of Applied Mathematics and Mechanics 74 (2010) 241–248

Fig. 1.

passing through the crack, the displacements and stresses undergo discontinuities of the first kind (jump discontinuities):

(1.3)

The sides of the crack are stress-free:

(1.4)

The solution of the problem is constructed in the form of the superposition of the displacement and stress fields

(1.5)

where u0 and �0 are the displacements and stresses generated by the centre of rotation when there is no crack in the medium

(H(z) is Heaviside’s function), and u1 and �1 are the displacements and stresses resulting from the presence of the crack (1.1). The
displacement u1(r, �, t) satisfies torsion equation (1.2).

We will change to dimensionless coordinates, for which we will introduce a change of variables

(1.6)

The application of the integral Laplace transformation with respect to time

leads, in Laplace-transform space, to the boundary-value problem

(1.7)
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The shear stresses are connected with the displacement by the relation

(1.8)

We will construct a discontinuous solution13 of Eq. (1.7) by successively applying to it the integral Kontorovich–Lebedev transformations

where Ki�(z) is a MacDonald function of imaginary-order. Then, using a generalized scheme,13 we apply the Legendre transformation

where P1
n (cos �) is the Legendre function of the first kind. Calculations using the generalized scheme of the method of integral transfor-

mations leads to a solution of Eq. (1.7) that satisfies this equation everywhere in the region 0 ≤ � ≤ ∞, 0 ≤ � ≤ 2�, with the exception
of the surface of the crack (1.1) (on the crack, the values of the displacement jump

〈
wp(�, �)

〉
and its normal derivative

〈
w

•
p(�, �)

〉
are

assumed to be those specified):

(1.9)

In order to satisfy the boundary condition in problem (1.7), we will rewrite it, taking into account the change of variables (1.6) and the
representation of the solution in form (1.5)

(1.10)

Subtracting the second equation from the first, we obtain the relation

(1.11)

which relates the jump of the unknown function to the jump of its derivative.
To change to limit values of the discontinuous solution (1.9) and its normal derivative, we must investigate the asymptotic forms of

the kernel Z(p�, p�̃; �, �) as n → ∞, and then repeat the procedure described earlier.14 Isolating the logarithmic kernel of the function
Z(p�, p�̃; �, �), it can be shown that

(Note that the limits of integration with respect to the variable �̃ allow for non-zero jumps of the displacement and its normal derivative
when �̃ > 1.)

We will now realize one of the conditions (1.10), namely for � = � − 0, eliminating one of the jumps using (1.11). We obtain the integral
equation

(1.12)

where 	p(�̃) =
〈

wp(�̃, �)
〉

is the unknown jump of the displacement.
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2. Solution of the integral equation

We will investigate the asymptotic forms of all three terms of the kernel of equation (1.12), using well-known formulae (Ref. 15, formula
(7.13.2)). We will temporarily assume that the Laplace transform parameter p is a positive number; subsequently, we will apply an analytic
continuation of its values. A Check shows that each integrand contains a singularity, and here the term with a second derivative has the
strongest of these – a hypersingularity. The series recurring in these terms diverge, owing to the fact that, under the integration sign, we
have introduced a differential operator

This can be shown if we consider the relation proved earlier14

In order to leave only converging series in the kernel of the equation, we will take this differential operator outside the integration sign
in Eq. (1.12). We transform integral equation (1.12) into the integral differential equation (IDE)

(2.1)

We will transform the series in the expression for S1 by using the asymptotic behaviour of the Bessel and Legendre functions of higher
orders (Ref. 15, formula (3.9.1(1))) and introducing the function

We will represent the series S1 in the form of the sum of two series:

where

and S̃1n is an asymptotically general term of the series

(N is a fairly large natural number). We will add and subtract in the representation of S1 the sum
N∑

n=1

S̃1n, after which, we will adopt, as the

expression for S1.
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Summing all the series in this expression,16 in Laplace transform space we obtain the IDE for a new unknown function, related to the
Laplace transform of the jump of displacements by the equality �p(�̃) = 	p(�̃)/�̃:

(2.2)

The expressions for S2(p�, p�̃) and S3(p�, p�̃) are given above. IDE (2.2) is solved approximately using the method of orthogonal
polynomials and time discretization.

In order to use the eigenvalue relation17

(2.3)

(L1/2
n (z) are Chebyshev–Laguerre polynomials), we will present the logarithm using the MacDonald function (Ref. 18, formula (7.2.5(38)))

(2.4)

The form of the function �(z) is given by a well-known formula (Ref. 18, formula (7.2.5(38))).
We transform the differential operator D� by taking the factor �2 outside the brackets, and in the brackets we add and substract unity

(2.5)

Taking into account the representations (2.4) and (2.5), after dividing both parts of the equation by −�2, we rewrite Eq. (2.2) in the form

(2.6)

We apply to Eq. (2.6) the inverse Laplace transform, taking well-known relations into account.19 We obtain

(2.7)

The function q(�) is defined by a tabulated inversion formula.19
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Further application of the convolution theorem for the Laplace transform enables us to obtain the IDE in the original space

(2.8)

Laplace inversion is carried out by means of formulae (2.7).
The perturbed field is investigated in the time interval � ∈ [0, T], which is divided into segments [�k, �k+1], �k = kT/M (k = 1, 2, . . ., M)

with a step h = T/M. The integral over the variable � in Eq. (2.8) is replaced by Simpson’s quadrature formula, the nodes of which are denoted
by Ak. We have

(2.9)

On the basis of the presence of eigenvalue relation (2.3), and the fact that the displacement jump on the crack is an unknown function,
we search for the solution of Eq. (2.9) in the form of the series

(2.10)

We substitute expansion (2.10) into Eq. (2.9) and realize the standard scheme of the orthogonal polynomial method. As a result, we
obtain a system of infinite linear algebraic equations

(2.11)

with coefficients

System (2.11) is initially solved for the case M = 1. This leads to the solution of the infinite system for the coefficients of expansion 	(1)
l

(l = 0, 1, 2, . . .) by the reduction method (its applicability is proved by a scheme proposed earlier13). For subsequent values of m, the system
is solved recurrently by transferring unknown terms to the right-hand side

(2.12)

Having obtained a solution of the system of the form (2.12), we thereby determine values of the unknown jump of displacements at
the k-th instant of time (k = 1, 2, . . ., M) by means of formula (2.10).
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Fig. 2.

3. Determination of the dynamic

3.1. Stress intensity factor (SIF)

The SIF values are defined by the formula

(3.1)

The stresses are determined using formula (1.5), where �0(r, �, �) is a continuous term not contributing to the calculation of the
SIF; the values of the stresses �1(r, �, �) are defined by the left-hand side of Eq. (2.9), namely by the first term, which contains the
highest-order singularity. Thus, the SIF at the k-th instant of time is defined by the expression

(3.2)

The functions 	k(�) are defined by expansion (2.10). To calculate the SIF, it is necessary to use analytic continuation of eigenvalue
relation (2.3). It has been shown17 that the following relation exists

(3.3)

We substitute expansion (2.10) under the integration sign in formula (3.2) and make the replacement of variables � = � − 1. Taking
formulae (3.3) into account, we finally obtain

The coefficients 	(k)
l

are determined from system (2.11).

4. Discussion of numerical results

As the elastic medium, we examined steel with crack opening angles � = �/3 and � = �/4 (Fig. 2) and with the centre of rotation
positioned as shown in Fig. 1. It can be seen that an increase in the crack opening angle leads to an increase in SIF values, and, from the sixth
instant of dimensionless time onwards, there is a tendency for a steady regime of vibrations to be established. The calculation algorithm
enables us to obtain SIF values for up to 12–14 instants of dimensionless time; then, in view of the build-up of errors on the right-hand
side of systems of the form (2.12), the calculation becomes unstable.
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Fig. 3.

The SIF values were also investigated as a function of the position of the centre of rotation. Curve 1 in Fig. 3 for a crack opening angle
� = �/3 corresponds to the position of the centre of rotation indicated in Fig. 1 (curve 2) – the position of the centre of rotation at a distance
b (b > R) from the origin of coordinates in the positive direction of OY axis. It can be seen that the SIF is considerably less in the latter case,
which is due to the peculiar screening effect created by the crack.
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